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Abstract

The automated design of Neural Networks is an active area of research in the
field of Computer Science, specifically Neuroevolution, which uses evolution-
ary techniques to evolve a neural network. However, the field of evolutionary
techniques is even larger than Neuroevolution. As such, there is a lack of
study into the effect certain genetic operations have on Neuroevolution. An
in-depth study and comparison between operators can be of value as it may
help grow the area of study and provide other researchers valuable infor-
mation. This paper aims to, initially, explore in-depth the effect of various
genetic operations used in a genetic algorithm for automated design. Finally,
a comparison of the various genetic operators will be performed.
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1 Introduction

Artificial Intelligence is an extremely valuable asset in the modern day and
age. With the huge amount of data available to us as we live in the Informa-
tion Age, as well as how busy the daily life of the modern human is, it is no
wonder that we need ways of offloading the computation of tasks that require
a lot of brain power. When attempting to create intelligent systems, nature
is one of the best places to draw inspiration from, as nature itself has already
solved the problem of intelligence over millions of years. Now that we have
hardware powerful enough to run complex computation, we are capable of
simulating processes that occur in nature.

One of the earliest inspirations we achieved was in the form of Evolutionary
Algorithms [1]. This technique attempts to mimic the way evolution works
in the natural world, by evolving a population of potential solutions to a
problem, made up of tailored ‘genes’, through generations. Each generation
attempts to acquire the best ‘genes’ from the previous one, until a solution
is found.

Artificial Neural Networks (ANNs) are another field of study derived from
natural systems, where an attempt is made to mimic the way neurons operate
within natural creatures. The modern technique of ANNs through the back-
propagation of errors through layers of connected neurons was popularized
in 1986 [2] and has since been used across many domains to solve countless
machine learning problems. However, there was no way to discern an optimal
topology (the layout of neurons in a neural network) of these networks by
means of an algorithm [3] until Neuroevolution.

Neuroevolution attempts to combine the two previous methods of Al, and
is defined as the process of altering aspects of an ANN through the means
of evolutionary algorithms [3]. This can help to find a way of achieving an
optimal topology for an ANN amongst other things. The idea of evolving an
ANN can be traced back all the way to the 1990s [4] and since then there
has been extensive research performed on the topic [3] [5] [6] [7].

Throughout this research, various genetic operators have been used in the
Evolutionary Algorithms used in Neuroevolution but there does not seem
to be an analysis of these operators. This paper aims to produce such an
analysis, which could prove valuable to researchers and anyone interested in
the topic of Neuroevolution.



1.1 Layout

The paper is set up into the following sections:

Section 2 - Genetic Algorithms

This section gives an overview of the intricacies of the Genetic Algorithm
method and how genetic operators are used within Genetic Algorithms.

Section 3 - Artificial Neural Networks

A brief overview of the workings of Artificial Neural Networks (ANNs) is
given in this section for interested readers.

Section 4 - Neuroevolution

The concept of Neuroevolution is introduced in this section. FExplaining
how Genetic Algorithms are merged with ANNs to create better artificial
intelligence opportunities as well as some methods for the implimentation of
Neuroevolution

Section 5 - Methodology

This section gives an overview of the research methodology used within this
paper.

Section 6 - Approach

An in-depth discussion of the experiment setup is given in this section.

Section 7 - Results and Discussion

This section contains the results of all the experiments performed using mul-
tiple types of genetic operators to evolve an ANN for classification of penguin
species.

Section 8 - Conclusion and Future Work

Ideas for expansion on the work done in this paper are given in this section
as well as a summary of the work done.



2 Genetic Algorithms

Streichart et al. describe genetic algorithms (GAs) as a branch of Evolu-
tionary Programming that “exhibit the clearest mapping from the natural
process of evolution onto a computer system, because they stress the coding
of attributes into a set of genes.”[8] The general process of an evolutionary
programming is taken from natural evolution and involves a population of
elements that, over generations, are evolved by calculating a fitness value for
each element, selecting the strongest elements of a generation and using them
to create a new generation through the application of various operators. This
process continues until a solution to the given problem is found. Figure 1
shows this process.

Randomly create
initial population

h 4

—» Evaluate population

A J

Select Parents

v

Apply genetic
operators to creaie
offspring

h 4

Replace current
population with new one

h 4

No Stopping Criteria

met?

Yes

h 4

Solution found

Figure 1: General EA Process

A Genetic Algorithm can be viewed as a multi-point search where the search
space is a set of ‘genes’ referred to as a ‘chromosome’. These ‘genes’ represent



the parts of the domain that are to be modified and are altered across gen-
erations through means of genetic operators. A solution is a ‘chromosome’
which contains a set of genes that solve the problem.

2.1 Genetic Operators

Genetic Operators are any operators used to modify the genes contained
within a chromosome in Genetic Programming, therefore traversing the search
space. Arguably the two main types of Genetic operators are crossover, where
genes are swapped between parents to create offspring, and mutation, where
genes are modified in a parent to create offspring. It is important to note that
there are different variations in how Crossover and Mutation are applied, this
is what this paper focuses on.

2.1.1 Crossover

Crossover aims to acquire successful genes from multiple elements of the
population. Two of the strongest elements in the population are selected as
parents for breeding. Genes are exchanged between the parents to produce
offspring in hopes that over multiple generations, the strongest genes will
remain in the population. Streichart et al. state that the operator “exchanges
genes between the parents to generate the descendants.”[8] This process is
shown in Figure 2.

Parent 1 Parent 2

Gene | Gene | Gene | Gene | Gene | Gene ‘ Gene ‘ Gene ‘ Gene ‘ Gene ‘ Gene ‘ Gene ‘

Offspring 1 Offspring 2

Gene | Gene | Gene ‘ Gene ‘ Gene ‘ Gene ‘ ‘ Gene ‘ Gene ‘ Gene | Gene | Gene | Gene

‘v/

Figure 2: Crossover

2.1.2 Crossover Operators

Much like mutation, there are various methods of applying crossover to a
population, one example is one point crossover, where a point in the chromo-
some is chosen and all genes to the right of that point will be crossed over,
this is shown in Figure 3.



Parent 1 : Offspring 1 :

| Gene ‘ Gene | Gene | Gene | Gene ‘ Gene ‘ ‘ Gene ‘ Gene ‘ Gene | Gene ‘ Gene ‘ Gene ‘
: EEmmm—— :

Parent 2 : Offspring 2 :

| Gene ‘ Gene | Gene | Gene | Gene ‘ Gene ‘ ‘ Gene ‘ Gene ‘ Gene | Gene ‘ Gene ‘ Gene ‘

Figure 3: Single Point Crossover

An operator similar to one point crossover is two point crossover, where two
points are randomly selected instead of one, and the genes between these two
points are crossed over, see Figure 4.

Parent 1 . . Offspring 1 . .

| Gene ‘ Gene ] Gene ‘ Gene | Gene | Gene ‘ ‘ Gene ‘ Gene ] Gene ‘ Gene ‘ Gene | Gene ‘
. : e . :

Parent 2 Offspring 2 :
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Figure 4: Two Point Crossover

Crossover can also be performed with a high level of randomness involved,
where a percentage of genes are randomly chosen across the chromosome and
swapped between the parents chosen for mating. Figure 5 demonstrates this.

Parent 1 Offspring 1

| Gene ‘ Gene | Gene ‘ Gene | Gene ‘ Gene ‘ ‘ Gene ‘ Gene ‘ Gene ‘ Gene ‘ Gene ‘ Gene ‘
: . . — : : :

Parent 2 : : Offspring 2 : : :

| Gene ‘ Gene | Gene ‘ Gene | Gene ‘ Gene ‘ ‘ Gene ‘ Gene ‘ Gene ‘ Gene ‘ Gene ‘ Gene ‘

Figure 5: Random Crossover



2.1.3 Mutation

Mutation aims to change one or more genes of a parent randomly, introducing
new combinations of genes into a population, expanding the search space. It
“resembles the naturally occurring accidents that can happen when DNA is
copied.”[8] This is shown in Figure 6.

Parent

Gene Gene Gene Gene Gene Gene

Offspring v v v

Zene Zene Gene Gene Zene Zene

Figure 6: Mutation

2.1.4 Mutation Operators

Mutation operators all act on a single parent, and involve randomly changing
the chromosome of the selected parent in some way. Some of the common
mutation operators found across papers were: single-gene mutation, where a
single gene is selected to be mutated, shown in Figure 7.

Farent

Zene Zene GZene GZene Zene Zene

Offspring

Zene Zene Zene Zene zene Zene

Figure 7: Single Gene Mutation



A slightly more advanced operator selects a gene for mutation, this gene and
it’s neighbouring genes are then mutated. This is shown in Figure 8§

Parent

Gene Gene Gene Gene Gene Gene

Offspring v

Zene Zene Gene Gene Zene Zene

Figure 8: Neighbouring Gene Mutation

Another form of mutation is multiple gene mutation, where a percentage
of genes are randomly selected for mutation, shown in Figure 9.

Farent

Zene Zene Gene Sene Zene Zene

Offspring

Zene Zene Zene Zene zene Zene

Figure 9: Multiple Gene Mutation

2.2 Genetic Operator Evaluation

As the number of Genetic Operators available increases, it is often not clear
which ones will be best suited for the task being worked on. Takahashi et



al. attempted to create a method for the evaluation of Genetic Operators.[9]
During their research, they stated “In most cases, there is not any analytical
justification for the choice of a specific operator structure”[9] and concluded
that “The question of what are the best operators has shown to be more
intricate, since the operators have been shown to be performance-dependent
one to another.”[9] This shows a need for the field of analysis of genetic
operators, specifically to aid the decision on what operators will achieve the
best results when applied to a specific problem scope.

3 Artificial Neural Networks

Another machine learning method derived from nature is that of Artificial
Neural Networks. These networks take inspiration from “the distributed,
massively parallel computation in the brain that enables it to be so success-
ful at complex control and recognition and classification tasks.”[10] They are
composed of multiple layers of ‘neurons’ connected to each other by math-
ematical values called weights. These weights are what are changed during
training in order for the network to make predictions. The neurons in the
network “are almost always simple transcendental functions whose arguments
are the weighted summation of the inputs to the node”[10] Figure 10 illus-
trates this model.

sindinp

Figure 10: Representation of Neural Network
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4 Neuroevolution

Baldominos et al. have extensively researched the history of Neuroevolution
(NE), starting from its beginnings in 1989 where “early works in NE are
concerned with evolving the weights of ANNs”[3] as well as some research
into parameter tuning such as the learning rate of a network, rather than at-
tempting to evolve their topologies. The idea for automated topology design
of an ANN has been around since 1989 with some early research.[11]

In the present, advanced neural networks are being used to solve a wide
range of machine learning problems. As a result of the advanced hardware
we have today, Baldominos et al. state that “The recent emergence of deep
and convolutional neural networks has brought back the need for designing
topologies that are suitable to tackle specific problems”[3]. This poses a new
challenge for NE as “DNNs and CNNs can have hundreds of thousands or
even millions of weights, and innovations must be introduced in NE for it to
adapt to these new topologies.”[3]

Modern NE still generally follows the general process of Evolutionary Algo-
rithms, however each element of the population represents a different network
topology or a network with different learning parameters, or a combination
of both. As we know from section 3.1, each element of the population must
have their fitness calculated individually, therefore each network will have
to be trained and evaluated, which is computationally expensive. Figure 11
shows this process.

i
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Genetic
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(Breeding)

Fitness calculation
(Testing)

Training Data

Figure 11: Evolution of Neural Networks

Neuroevolution is still being actively studied, and will continue to be nec-
essary as the field of ANNs grows. Floreano et al. predicted in 2008 that
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“neuroevolution will continue to provide efficient solutions to hard problems
as well as new insights into how biological brains became what they are in
physical bodies interacting with dynamic environments.”[7] and recently, in
2019, Stanley et al. stated “Just as evolution did in the natural evolution
of intelligence, we expect that neuroevolution will play an important role in
our collective quest to create human-level Al and algorithms that endlessly
innovate.” [6] and 2020, Baldominos et al. ended their paper by stating
“Much work is still to be done, but given the large applicability of CNNs and
their success, the automatic evolutionary design of their topologies is a very
promising area which must be tackled as of today.”

Given the above, an in-depth analysis of genetic operations used in the field
of NE could prove valuable to assist in further research.

4.1 Chromosomes in Neuroevolution

One of the most commonly used representations of a chromosome for the
architecture of a Neural Network is a binary string. [12] [13] [14] [15] [16]
[17] [18] [19] [20]

This string is a series of binary characters with different segments of the bi-
nary string representing different parts of an ANNs architecture. The string
can represent basic parts of the architecture, Arifovic et al. used a string
that ‘consists of [chrom bits. The Ilchrom bits are divided into three parts.
The first part of length lw is used to encode the initial weight range. The
second part of length Ichroi is used to encode what inputs will be used and
the third part of length /A is used to encode the number of hidden units.[12]
However, the binary string may also be more complex, such as bit strings of
length 42 [17] and of length 77 [16]

A similar representation include using the string to represent a connectivity
matrix [14] [21] [22], where the string is turned into a two-dimensional matrix
representing the connectivity structure of nodes in a neural network.

A representation similar to a binary string is an integer string[23], which
follows the same concept of a binary string but is shorter due to characters
represented as base-10 integers rather than binary digits. Hybrid representa-
tions, that use both binary and integer strings in their chromosome exist. [24]

Finally, the highest level of representation used is one where each gene in
a chromosome represents an individual variable[25], each with it’s own cat-
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egories of allowed options, or restrictions on values placed in them. Goni et
al. used variables that represented ‘the network parameters, i.e. the connec-
tion weights and biases of the network nodes, the moment coefficient and the
learning rate, the last two with the restriction of being positive values.[25]

5 Methodology

5.1 Research Methodology

The methodology used for this research will be a ‘Proof by Demonstra-
tion’, described by Chris Johnson as research that aims “to build something
and then let that artefact stand as an example for a more general class of
solutions.”[26] This approach differs from other Methodologies as “it is often
the case that this approach ignores the formation of any clear hypothesis or
conclusion until after the artefact is built.”[26] Using this method, the op-
erators being studied will be recreated and tested. Proof by Demonstration
focuses on refinement of the operators used, meaning that initial results are
used in later attempts to try and produce better results until a satisfactory
result is achieved.

5.2 Metrics

In order to measure the performance of the various genetic operators being
experimented upon, metrics that measure how effectively an operator creates
children from one generation to the next need to be used. Therefore, the
chosen metrics for the experiment are as follows:

o Improvement chance: The chance an operator has to improve the ANN
model from one generation to the next.

o Improvement amount: When there is an improvement across a gener-
ation, how much the model’s accuracy improved is recorded.

o Final Accuracy: This metric will help to determine the overall success
of an operator.

5.3 Choice of Data-set

As this study relies on building and training a large amount of artificial neu-
ral networks, a small dataset was chosen to ensure that enough experiments
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could be run. It was also necessary to ensure that high categorical accuracy
would be possible, as such it was important to find a data set that is fully
separable. Taking the above into consideration, the Palmer Penguins[27]
dataset was chosen. This data set contains various attributes of three dis-
tinct penguin species, namely: Chinstrap, Gentoo and Adelie. This dataset
consists of 5 values per entry:

o Bill length, in mm

o Bill depth, in mm

o Flipper length, in mm
e Body mass, in g

» Species of penguin

The ANNs created will be trained on this data to classify the species of the
penguin based on the 4 features given.

5.4 Data Pre-processing

As we are using an ANN for classification, the species will be one-hot encoded
and the ANN given 3 output nodes. One hot-encoding is the process where
each class is represented as an array with the same length as there are number
of classes, where each value is 0, except for the position the class represents,
which is changed to a one. In this case, the penguin species are modified as
follows:

o Chinstrap —>[1, 0, 0]
« Gentoo —>[0, 1, 0]
o Adelie —>[0, 0, 1]

The data was then spilt into a training and testing set, with a ratio of 9:1.
i.e 90% of the data was used for training purposes and the remaining 10%
was used for testing the trained models.

5.5 Representation

In this paper, the architecture of an ANN will be created using a chromo-
some consisting of multiple variables. The chromosome will consist of, the
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activation function used for hidden and output neurons, the optimization al-
gorithm used for training, the number of nodes per hidden layer, the number
of hidden layers, the inclusion of dropout, and lastly the number of epochs
that the network will train for. The different possibilities for each gene are
displayed in the following table:

’ Variable \ Possible Parameters ‘
Activation {relu, sigmoid, softmax, softplus, softsign, tanh, selu, elu, exp}
Optimization | {sgd, rmsprop, adam, adadelta, adagrad, adamax, nadam, ftrl}
Hidden Neurons {3-20}
Hidden Layers {0, 1, 2}
Dropout {True, False}
Epochs {5-30}
6 Approach

6.1 GA parameters

The following parameters were used for the Genetic Algorithm responsible
for applying the genetic operators to the ANN chromosomes:

’ Parameter ‘ Value ‘
Population Size 40
Parent Selection Tournament Selection
Tournament Size 5
Mutation Rate 0.3
Crossover Rate 0.7
Termination Criteria 10 Generations

A fixed generation number was decided upon via empirical testing. It was
found that the algorithm converged within 10 generations every time.

6.2 Experiments

As the aim of this paper is to analyze various genetic operators, a baseline
experiment will be performed, followed by additional experiments with the
genetic operators used being the only difference between experiments.

Each experiment will involve 10 runs of the Genetic Algorithm, each run with
a unique number assigned as the seed for the random number generator used
for the GA. Single-gene crossover will serve as the crossover operator used
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for the baseline experiment, where only a single gene is randomly selected to
be swapped between parents. Likewise, single gene mutation will be used as
the baseline mutation operator, where a single gene is randomly selected for
mutation.

Once the baseline experiment is completed, two additional experiments will
be conducted for crossover operators, one where the crossover operator used
will be single point crossover, and the other using random crossover, both
explained in Section 2.1.2.

A final two experiments will be conducted where the mutation operator now
becomes the subject of interest, the two additional mutation operators exper-
imented with are neighbouring gene mutation and multiple gene mutation,
both explained in 2.1.4.

7 Results

Every experiment conducted was successful in producing a network that
achieved a prediction accuracy greater than 95%, with majority of exper-
iments producing trained models that achieved a prediction accuracy of
greater than 99% . A breakdown of the experiments and the resulting anal-
ysis are given below.

7.1 Baseline

To show the effectiveness of the Genetic Algorithm with the baseline opera-
tors mentioned in Section 6.5, a run was chosen to graph the improvement
across generations. Fligure 12 takes the best performing model from each gen-
eration and shows the minimization of loss: As the loss of a model decreases,
it’s accuracy increases. Figure 13 shows the accuracy of the best model from
each generation, taken from the same experiment as the loss graph. The best
chromosome after 10 generations from the same experiment, whose resulting
model achieved a prediction accuracy of 99.6% is as follows:

’ Variable ‘ Value ‘
Activation Function exponential
Optimization Algorithm adam
Number of Hidden Neurons 16
Number of Hidden Layers 2
Dropout False
Training Epochs 21
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Model Loss

1 2 3 4 5 6 7 8 9 10
Generation

Figure 12: Loss change across generations

7.2 Crossover Results

After performing the crossover experiments, there was no noticeable differ-
ence in the rate at which the crossover operators were improving the children,
however the general trend in the amount improved, when an operator did
improve the result, the crossover operators that shared more genes between
parents performed better with regards to the amount of improvement across
a generation.

The results are as follows:

Operator: Baseline | Single Point | Random

Average Chance for Improvement: || 61.59% 59.63% 59.92%
Average Improvement Amount: 2.82% 3.72% 3.12%
Best Final Accuracy: 99.6% 100% 100%
Average Final Accuracy: 99.35% 99.26% 99.13%

7.3 Mutation Results

The mutation experiments show that using operators that mutate more than
one gene of a chromosome have better improvements on accuracy over gen-
erations than operators that mutate less of a chromosome. Multiple Ran-
dom mutations had a significalnlty higher chance to improve the population
across a generation, however the average final accuracy after 10 generations
was lower than experiments which used other mutation operators.
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Model Accuracy

/

1 2 3 4 5 6 7 8 9 10
Generation

Figure 13: Accuracy change across generations

Operator: Baseline | Neighbouring | Multiple Random
Average Chance for Improvement: | 61.59% 54.84% 71.87T%
Average Improvement Amount: 2.82% 4.47% 3.53%
Best Final Accuracy: 99.6% 99.6% 100%
Average Final Accuracy: 99.35% 99.20% 97.83%

7.4 Observations

It is worth noting that every operator used was able to produce great results
in the GA, with every combination achieving a max accuracy of over 99% af-
ter 10 generations of application. The lowest average accuracy was achieved
by the random gene mutation, this may be caused due to too many genes
being mutated, moving the chromosome away from an optimum solution.
The crossover operators all performed well, showing that many forms of
crossover are viable, as long as they are given a decently sized population for
the application of these crossover operators.

Some of these results are dependant on the initial population created, as pop-
ulations that were created with high accuracies to begin with would have less
room for improvement. However, no initial population recorded an accuracy
lower than 70%.
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8 Conclusion

8.1 General Discussion

The aim of this study was to investigate and analyze the effectiveness of
various Genetic Operators applied as part of a Genetic Algorithm created
for the evolution of the architecture of an ANN for classification purposes.
A study into their effectiveness will help the growing field of neuroevolution
and assist researches in the choice for their genetic operators when creating
Neuroevolution systems. Experiments were set up to evaluate various genetic
operators. The chosen network was a fully connected ANN for data classi-
fication. The data chosen to be classified was data on penguin species in
the palmer islands based on physical statistics captured by scientists. It was
found that no significant difference occurred between different crossover op-
erators, as long as there was enough of a population for crossover to operate
on, they all performed well. Mutation operators showed the biggest differ-
ence in the workings of the Genetic Algorithm across generations. More
mutation of genes was preferable, however too much mutation did not al-
low the generation to converge to the global optimum more often than other
operators.

8.2 Future Work

This study leaves open the questions of whether or not the same observations
will be present when these experiments are performed on a different data set
or on more advanced ANNs such as Deep Neural Networks and Convolu-
tional Neural Networks. A wider range of genetic operators could also be
experimented on to widen the scope of the operators experimented upon in
this paper.

Based on the results obtained, work could be done to develop new genetic
operators that have the benefits of multiple operators together.
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